Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase.

نویسندگان

  • Elena K Davydova
  • Lucia B Rothman-Denes
چکیده

Coliphage N4 virion RNA polymerase (vRNAP), the most distantly related member of the T7-like family of RNA polymerases, is responsible for transcription of the early genes of the linear double-stranded DNA phage genome. Escherichia coli single-stranded DNA-binding protein (EcoSSB) is required for N4 early transcription in vivo, as well as for in vitro transcription on super-coiled DNA templates containing vRNAP promoters. In contrast to other DNA-dependent RNA polymerases, vRNAP initiates transcription on single-stranded, promoter-containing templates with in vivo specificity; however, the RNA product is not displaced, thus limiting template usage to one round. We show that EcoSSB activates vRNAP transcription at limiting single-stranded template concentrations through template recycling. EcoSSB binds to the template and to the nascent transcript and prevents the formation of a transcriptionally inert RNA:DNA hybrid. Using C-terminally truncated EcoSSB mutant proteins, human mitochondrial SSB (Hsmt SSB), phage P1 SSB, and F episome-encoded SSB, as well as a Hsmt-EcoSSB chimera, we have mapped a determinant of template recycling to the C-terminal amino acids of EcoSSB. T7 RNAP contains an amino-terminal domain responsible for binding the RNA product as it exits from the enzyme. No sequence similarity to this domain exists in vRNAP. Hereby, we propose a unique role for EcoSSB: It functionally substitutes in N4 vRNAP for the N-terminal domain of T7 RNAP responsible for RNA binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E. coli SSB Activates N4 Virion RNA Polymerase Promoters by Stabilizing a DNA Hairpin Required for Promoter Recognition

Bacteriophage N4 virion RNA polymerase transcription of double-stranded promoter-containing DNAs requires supercoiled template and E. coli single-stranded DNA-binding protein (EcoSSB); other single-stranded DNA-binding proteins cannot substitute. The DNA determinants of virion RNA polymerase binding at the promoter comprise a small template-strand hairpin. The requirement for EcoSSB is surprisi...

متن کامل

Sequence and DNA structural determinants of N4 virion RNA polymerase-promoter recognition.

Coliphage N4-coded, virion-encapsidated RNA polymerase (vRNAP) is able to bind to and transcribe promoter-containing double-stranded DNAs when the template is supercoiled and Escherichia coli single-stranded DNA-binding protein (Eco SSB) is present. We report that vRNAP-promoter recognition and activity on these templates require specific sequences and a hairpin structure on the template strand...

متن کامل

A covalent linkage between the gene 5 DNA polymerase of bacteriophage T7 and Escherichia coli thioredoxin, the processivity factor: fate of thioredoxin during DNA synthesis.

Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of t...

متن کامل

Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro.

The DNA-unwinding protein from Escherichia coli has been purified to homogeneity. It is a single polypeptide of 22,000 daltons; the native molecular weight is 90,000. The effect of the protein on the activity of the three DNA polymerases of E. coli has been studied. The activities of DNA polymerases I and III are significantly reduced, whereas DNA polymerase II activity is enhanced in the prese...

متن کامل

Bacteriophage N4 virion RNA polymerase interaction with its promoter DNA hairpin.

Bacteriophage N4 minivirion RNA polymerase (mini-vRNAP), the RNA polymerase (RNAP) domain of vRNAP, is a member of the T7-like RNAP family. Mini-vRNAP recognizes promoters that comprise conserved sequences and a 3-base loop-5-base pair (bp) stem DNA hairpin structure on single-stranded templates. Here, we defined the DNA structural and sequence requirements for mini-vRNAP promoter recognition. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 16  شماره 

صفحات  -

تاریخ انتشار 2003